ECS455 Chapter 2 Cellular Systems

2.4 Traffice Handling Capacity and Erlang B Formula

Dr.Prapun Suksompong prapun.com/ecs455 Office Hours: BKD 3601-7 Wednesday 15:30-16:30 Friday 9:30-10:30

Capacity Concept: A Revisit

- Q: If I have *m* channels per cell, is it true that my cell can support only *m* user?
- A:Yes and No
- Let's try one example.
- How often do you make a call?
 - 3 calls a day, on average. $\leftarrow \lambda_{O_{A}}$
- How long is the call?
 - 10 mins (per call), on average. $\leftarrow H = \frac{1}{4}$
- So, one person uses

Capacity Concept: A Revisit

- If we can "give" the time that "User 1" is idle to other users,
 - then one channel can support 48 users!! (48× capacity⁼)
- True? (Not quite)
- 48 viers is possible if we have a way to manipulate all 48 viers to not make calls when another vier is using the channel.
- Real users access the channel randomly.
 (Call initiation/request times are random.)

· If we allow >1 users, then we (the users) will have to deal with congestion.

New Concepts

- Using *m* as the capacity of a cell is too small.
- We can let more than one user share a channel by using it at different times.
- The number of users that a cell can support can then exceed *m*.
- Call initiation times are random
- Blocked calls
- Probability of (call) blocking P_b
 - the likelihood that a call is blocked because there is no available channel.
 - 1%, 2%, 5%

Trunking

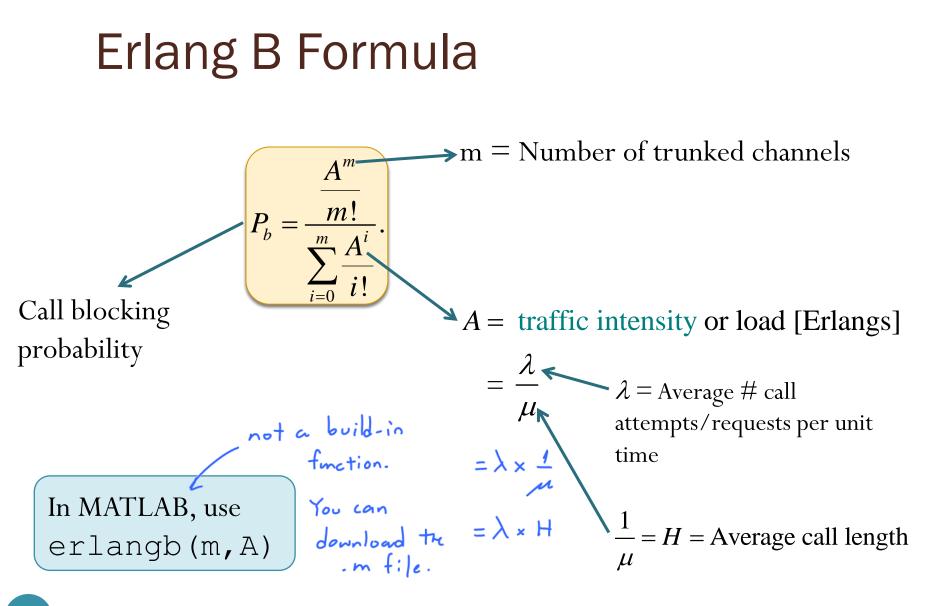
- Allow a large number (*n*) of users to **share** the relatively small number of channels in a cell (or a sector) by providing access to each user, **on demand**, from a **pool** of available channels.
- Exploit the statistical behavior of users.
- Each user is allocated a channel on a per call basis, and upon termination of the call, the previously occupied channel is immediately returned to the pool of available channels.

Common Terms (1)

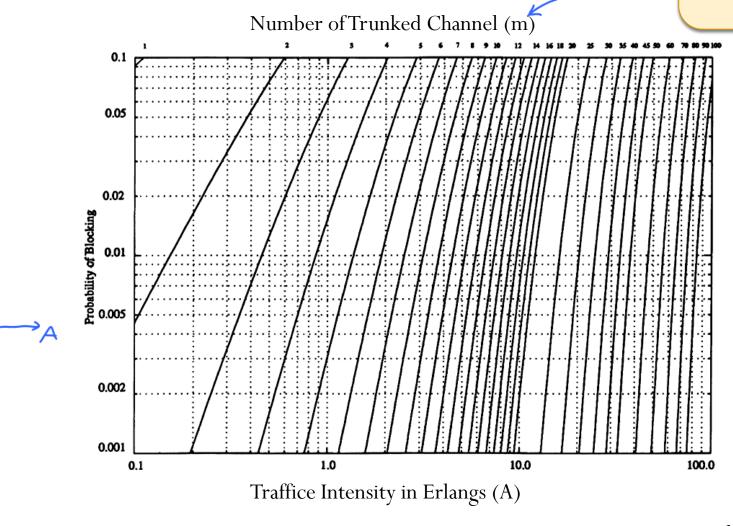
- Traffic Intensity: Measure of channel time utilization (traffic load / amount of traffic), which is the average channel occupancy measured in Erlangs. In our example,
 - Dimensionless one user utilizes $A_{ij} = \frac{1}{4\pi}$ Erlang

utilise

A = 10 Erlong.


- · Denoted by A. If we have n=10 users in the pool, then they
- HoldingTime: Average duration of a typical call.
 - Denoted by $H = 1/\mu$. = 10 mins
- Request Rate: The average number of call requests per unit time. Denoted by λ . $\lambda = \frac{3}{10 \times 3} = \frac{3}{20} \operatorname{call}/day$.
- Use A_u and λ_u to denote the corresponding quantities for one user.
- Note that $A = nA_u$ and $\lambda = n\lambda_u$ where *n* is the number of users supported by the pool (trunked channels) under consideration.

Common Terms (2)


- **Blocked Call**: Call which cannot be completed at time of request, due to congestion. Also referred to as a **lost call**.
- Grade of Service (GOS): A measure of congestion which is specified as the probability of a call being blocked (for Erlang B). P_b $f_b \leq 0.02$
 - The AMPS cellular system is designed for a GOS of 2% blocking. This implies that the channel allocations for cell sites are designed so that 2 out of 100 calls will be blocked due to channel occupancy during the busiest hour.

M/M/m/m Assumption

- Blocked calls cleared
 - Offers **no queuing** for call requests.
 - For every user who requests service, it is assumed there is **no setup time** and the user is given immediate access to a channel if one is available.
 - If no channels are available, the requesting user is blocked without access and is free to try again later.
- Calls arrive as determined by a **Poisson** process.
- There are **memoryless arrivals** of requests, implying that all users, including blocked users, may request a channel at any time.
- There are an **infinite number of user**s (with finite overall request rate).
 - The finite user results always predict a smaller likelihood of blocking. So, assuming infinite number of users provides a conservative estimate.
- The duration of the time that a user occupies a channel is *exponentially distributed*, so that longer calls are less likely to occur.
- There are <u>*m* channels</u> available in the trunking pool.
 - For us, m = the number of channels for a cell \bigotimes or for a sector

Erlang B Formula and Chart

(log-log plot)

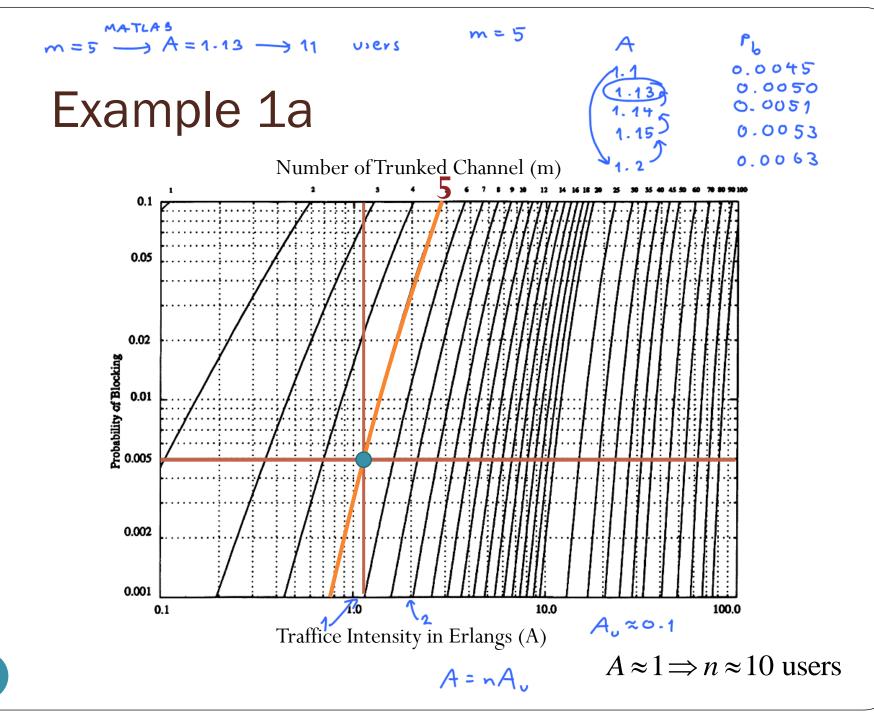
 A^m

m

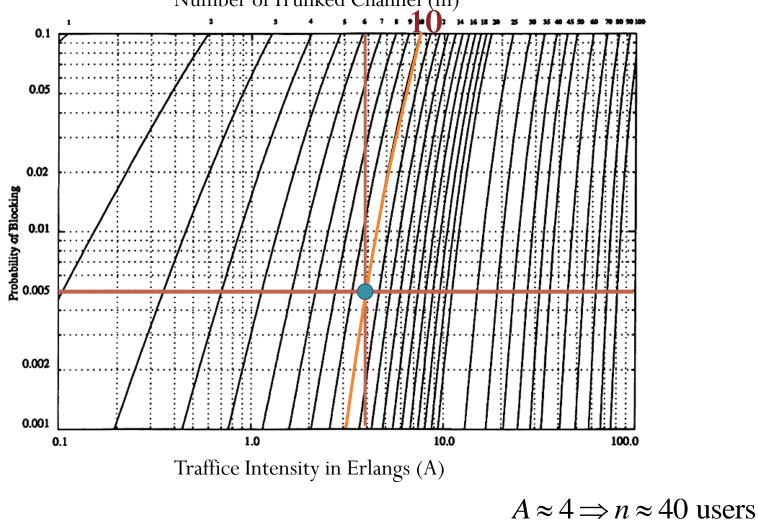
т

 $P_b =$

Example 1


Pb ≤ 0.005

 How many users can be supported for 0.5% blocking probability for the following number of trunked channels in a blocked calls cleared system?


(a)
$$5 m = 5$$

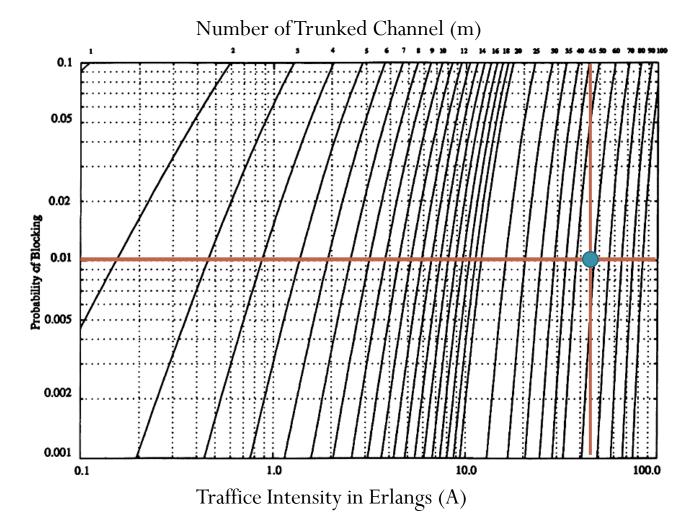
(b) $10 m = 10$

• Assume each user generates $A_u = 0.1$ Erlangs of traffic.

For example, $A_{\nu} = \lambda_{\nu} \cdot \frac{1}{n}$ $6 \pm ims/day$ $average 24 \min \int \frac{6 \times 24}{24 \times 60} = \frac{1}{10}$

Example 1b $m = 10 \rightarrow A = 3.96 \rightarrow 39$ views Number of Trunked Channel (m)

Example 2.1

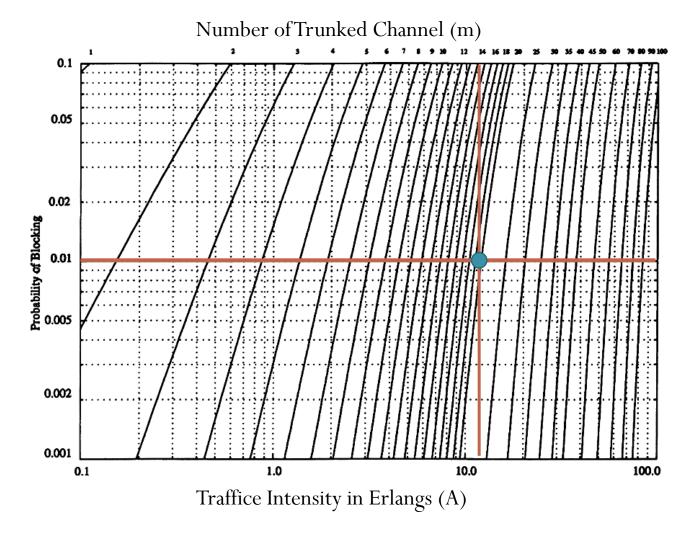

- Consider a cellular system in which
 - an average call lasts two minutes $H = \frac{1}{m} = 2 \text{ mins}$
 - the probability of blocking is to be no more than 1%. $l_{b} \leq 0.01$
- If there are a total of 395 traffic channels for a seven-cell reuse system, there will be about 57 traffic channels per cell.
- From the Erlang B formula, can handle 44.2 Erlangs or 1326 calls per hour.

$$44.2 = \lambda \times \frac{2 \min s}{call}$$

$$\lambda = \frac{44.2}{2} \frac{calls}{calls} = 22.1 \text{ calls}/calls/$$

[Rappaport, 2002, Ex 3.9, p 92]

Example 2.1: Erlang B

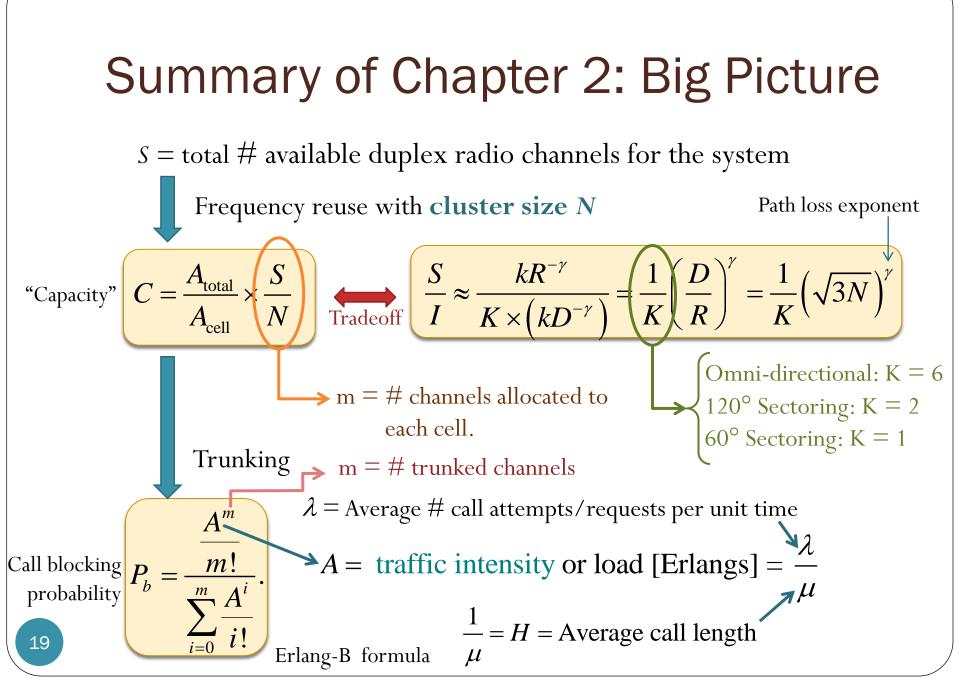

Example 2.2

- Now employing 120° sectoring, there are only 19 channels per sector (57/3 antennas).
- For the same probability of blocking and average call length, each sector can handle 11.2 Erlangs or 336 calls per hour.
- Since each cell consists of three sectors, this provides a cell capacity of 3 × 336 = 1008 calls per hour, which amounts to a 24% decrease when compared to the unsectored case.
- Thus, sectoring decreases the **trunking efficiency** while improving the SIR for each user in the system.

worre Erlang better SIR,

[Rappaport, 2002, Ex 3.9, p 92]

Example 2.2: Erlang B

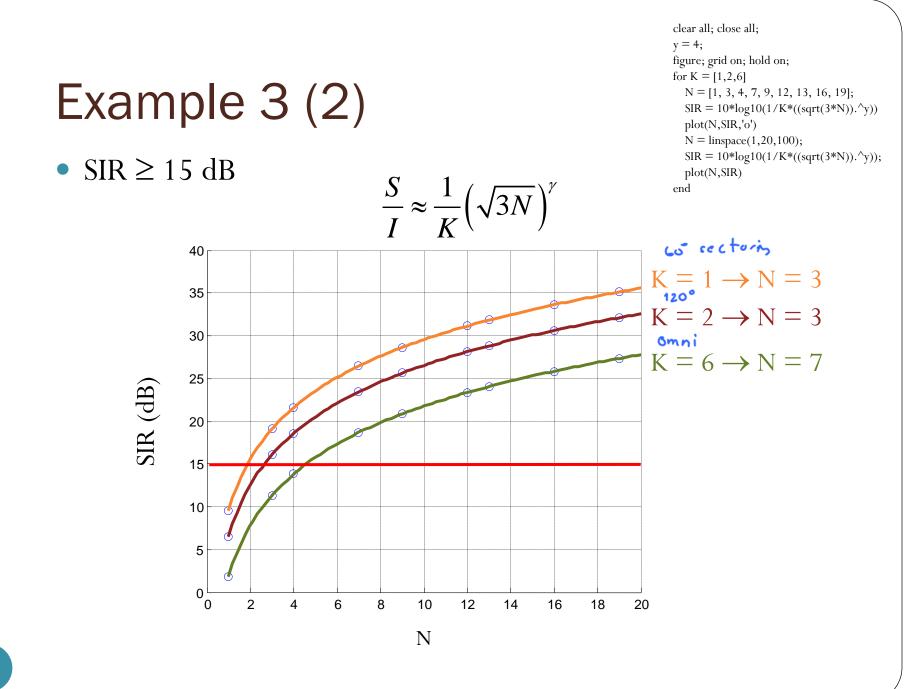


Erlang B Trunking Efficiency

Table 3.4 Capacity of an Erlang B System

Number of Channels		= 0.01	Capacity (Erla = 0.005	ngs) for GOS = 0.002	°b 0.1% = 0.001
2		0.153	0.105	0.065	0.046
4		0.869	0.701	0.535	0.439
5		1.36	1.13	0.900	0.762
10	×2	4.46	>2 3.96	3.43	3.09
 20 4		12.0	11.1	10.1	9.41
24		15.3	14.2	13.0	12.2
40		29.0	27.3	25.7	24.5
 70		56.1	53.7	51.0	49.2
 100		84.1	80.9	77.4	75.2

[Rappaport, 2002, Table 3.4]


Example 3 (1)

- System Design
- 20 MHz of total spectrum.
- Each simplex channel has 25 kHz RF bandwidth.
- The number of duplex channels:

$$S = \frac{20 \times 10^6}{2 \times 25 \times 10^3} = 400 \text{ channels}$$

- Design requirements:
 - SIR $\geq 15 \text{ dB}$

•
$$P_b \leq 5\%$$

Example 3 (3)

		Omnidirectional	Sectoring (120°)	Sectoring (60°)
	Κ	6	2	1
	Ν	7	3	3
	SIR [dB]	18.7	16.1	19.1
5= 40 0	#channels/cell	400/7 = 57	400/3 = 133	400/3 = 133
	#sectors	1	3	6
m =	#channels/sector	57	133/3 = 44	133/6 = 22
	A [Erlangs]/sector	51.55	38.56 best	17.13
	A [Erlangs]/cell	51.55	38.56×3 = 115.68	$17.13 \times 6 = 102.78$
	#users/cell	18558	41645	37001

Assume that each user makes 2 calls/day and 2 min/call on average \rightarrow 1/360 Erlangs.

Make sure that you understand where numbers in this table come from!